Texas A&M University – Corpus Christi

Department of Computing Sciences

Geospatial Systems Engineering Graduate Program

Graduate Student Hand Book

Master of Science Degree

Academic Year 2020-2021

This handbook is intended to be read in conjunction with the Graduate Catalog: http://catalog.tamucc.edu/preview_program.php?catoid=18&poid=1979&returnto=74, the College of Graduate Studies Handbook http://gradcollege.tamucc.edu/current_students/masters_students.html and the graduate program webpage http://gradcollege.tamucc.edu/degrees/science/geo_sys_eng.html
Contents
i. Welcome Message .. 3
1. Program Description .. 3
2. Faculty & Staff .. 3
3. Degree and Program Requirements ... 3
4. Additional Information .. 3
 4.A. Master of Science Degree Requirements .. 9
 4.B. Grades .. 10
 4.C. Course Loads .. 11
 4.D. Course Formats .. 11
 4.E. Advisement ... 12
 4.F. Evaluation of Graduate Students .. 13
 4.G. Financial Assistance .. 13
 4.H. Selection and Continuation of Assistantships ... 13
 4.I. Admission to Candidacy (in the Program) ... 13
 4.J. Summary of Procedural Steps toward the M.S. Degree .. 13
5. General Guidelines for Courses and Labs ... 15
 5.A. Class Culture .. 15
 5.B. Course Procedures and Regulations ... 15
6. Course Instruction Software ... 16
 6.A. University Email address .. 17
 6.B. SAIL – Registering for Classes and Updating Personal Information .. 17
 6.C. Blackboard ... 17
7. Technical Requirements ... 18
8. New Graduate Student Checklist ... 19
i. Welcome Message

Welcome to the Geospatial Systems Engineering Program at Texas A&M University – Corpus Christi. The faculty and staff in the program look forward to working with you for a successful completion of your degree.

This document outlines the requirements for completing your degree, discusses the culture of the program, covers the software used for instruction and lists technical requirements to access these resources. After reading this document, refer to the checklist in section 8 to help you get set up for your first semester.

1. Program Description

The Master of Science in Geospatial Systems Engineering (GSSE/GSEN) will provide students with knowledge and skills focusing on the research, design, development, and use of technologies in geospatial systems engineering. The program builds upon the ABET accredited undergraduate Geographic Information Science program (GISc) and the existing geographic information science concentration in the master’s program in computer science. The program satisfies the regional, state and national need for master’s-level graduates in geospatial systems design and surveying engineering. Due to the diversity of geospatial applications in industry, the 36 credit hour program is purposely designed to offer breadth in the course work.

Our degree is offered entirely online and on campus. **If you plan on attending courses online, you are required to have access to high-speed internet access on a daily basis.**

Objectives of the program:

Graduates of the Master of Science in Geospatial Systems Engineering will demonstrate the ability to:

1. Develop, manage, and analyze geospatial data using field and laboratory techniques, integrating surveying and engineering.
2. Develop the capacity for continued learning and professional application.
3. Apply geospatial systems engineering technologies creatively in real-world setting to solve geospatial processes and effects.
4. Become nationally and internationally recognized professionals.

Program Outcomes:

Graduates of the Master of Science in Geospatial Systems Engineering will have:

1. The ability to lead teams and apply problem-solving skills that include oral and written communication skills to effectively communicate professional geospatial information.
2. An awareness and utilization of external organizations and institutions that provide useful geospatial data sets and their relationships to traditional and contemporary societal issues.

3. A recognition of the need for continued learning and development of leadership skills through involvement in volunteer professional organizations and societies.

2. FACULTY AND STAFF

For a more comprehensive list visit: http://sci.tamucc.edu/CSCI/GISC/faculty/index.html

Dr. Yuxia (Lucy) Huang
Associate Professor and GSEN Program Coordinator
Phone: 361-825-2646
Email: lucy.huang@tamucc.edu
Office: CBI 109
Visit Faculty Website

Dr. Michael J. Starek
Associate Professor and Director of MANTIS Lab
Phone: 361-825-3979
Email: michael.starek@tamucc.edu
Office: NRC 3407
Visit Faculty Website

Dr. Antonio Medrano
Assistant Professor and Director of GOAL Lab
Phone: TBD
Email: TBD
Office: TBD
Visit Faculty Website

Dr. Tianxing Chu
Assistant Professor
Phone: 361-737-3979
Email: tianxing.chu@tamucc.edu
Office: NRC 3400
View Curriculum Vitae

Dr. Hongzhi (Jessica) Song, GISP
Professional Assistant Professor and GISC Program Coordinator
Phone: 361-825-3120
Email: hongzhi.song@tamucc.edu
Office: CBI 108
View Curriculum Vitae

Dr. Davey Edwards, RPLS, LSLS
Professional Assistant Professor
Phone: (361) 825-3419
Email: davey.edwards@tamucc.edu
Office: CBI 105

3. Degree Requirements

The course of study leading to a MS degree in Geospatial Systems Engineering is composed of four components:

I. General prerequisites (must be satisfied before the student can be formally and unconditionally accepted to the MS program).

II. Options

III. Required Courses.
IV. Elective Courses.
V. Additional Courses.

I. General Prerequisites

1. Geospatial Systems Engineering

Every student is expected to have achieved certain minimum competencies in geospatial science before being formally admitted to the MS degree program. Students who have not earned a baccalaureate degree in Geographic Information Science, Surveying, or a similar field must consult with the coordinator of the Geospatial Systems Engineering Program to design a plan of appropriate leveling courses.

2. Mathematics

Every student must have minimum level of knowledge in mathematics equivalent to the mathematics courses in the BS in GISC and will be evaluated on an individual basis by Geospatial Systems Engineering faculty.

3. English

Every student is expected to have minimum competencies in English composition, especially in technical writing. In preparation for reports that are required in the workplace, numerous reports are required during the course of study for the degree. The proposal, the creative project and the thesis require technical writing.

II. Options

Students must chose from the following tracks:

- Track 1 Geosensing Systems and UAS for Geomatics
- Track 2 Geospatial Data Science and Analytics

The student can chose either a project or a thesis option under their chosen track.

1. Thesis Option

A Graduate Thesis based upon original research, supported by the scientific literature, and proved statistically, will be required under this option. The thesis option master’s degree will allow a person to pursue advanced graduate study, or to obtain employment in most areas requiring a detailed knowledge of specific aspects of geospatial systems engineering. The Geospatial Systems Engineering Graduate Thesis requires 9 hours of research and a formal
publishable thesis. Students are required to register for for GSEN 5395 Graduate Project Research and Proposal to develop a proposal. After the proposal is accepted by the committee, students must enroll in a minimum of 6 hours of GSEN 5998 Graduate Thesis. Additionally, in the semester of intended graduation, students must enroll in an additional 3 hours of GSEN 5998 Graduate Thesis and must schedule a presentation of their thesis to the advisory committee, which may include an oral examination of the graduate research and thesis.

Graduate Project Research and Proposal (GSEN 5395) and Graduate Thesis (GSEN 5998) (Total 12 hours)

<table>
<thead>
<tr>
<th>Thesis Option Track 1 or 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>12 sem. hrs.</td>
</tr>
<tr>
<td>Electives (approved by faculty advisor)</td>
<td>12 sem. hrs.</td>
</tr>
<tr>
<td>Graduate Research Design</td>
<td>3 sem. hrs. GSEN 5395</td>
</tr>
<tr>
<td>Graduate Thesis</td>
<td>9 sem. hrs. GSEN 5998</td>
</tr>
<tr>
<td>TOTAL THESIS HOURS:</td>
<td>36</td>
</tr>
</tbody>
</table>

Total hours (Thesis option): 36

2. Project Option:

The project option is a Graduate Creative Project designed for students who desire a more detailed study into a specific geospatial systems engineering project. The curriculum will especially benefit individuals employed in scientific or technical fields who seek advancement or additional training to enhance their knowledge and skills. Graduate Creative Project students must complete a professional research project with a written final report and seminar. The Graduate Creative Project requires 3 hours of research and a formal publishable project report. Students are required to register for Graduate Project Research and Proposal (GSEN 5395) to develop a proposal for Graduate Creative Project. After completion of all other requirements for the MS degree in GSEN, students must schedule a presentation of their project to the advisory committee, which may include an oral examination of the graduate research and Graduate Creative Project.

Graduate Project Research and Proposal (GSEN 5395) and Graduate Creative Project (GSEN 5993) (Total 6 hours)

<table>
<thead>
<tr>
<th>Project Option Track 1 or 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>12 sem. hrs.</td>
</tr>
<tr>
<td>Electives (approved by faculty advisor)</td>
<td>18 sem. hrs.</td>
</tr>
</tbody>
</table>
Graduate Research Design | 3 sem. hrs. | GSEN 5395
Graduate Creative Project | 3 sem. hrs. | GSEN 5993

TOTAL PROJECT HOURS: | **36**

Total hours (Project option): 36

III. Required Core Courses

All Geospatial Systems Engineering Track 1, Geosensing Systems and UAS for Geomatics, students must complete the following Core Courses:

- **GSEN 6370 - UAS for Surveying and Mapping**
- **GSEN 6371 - Geopositioning Systems and Autonomous Navigation**
- **GSEN 6385 - Photogrammetric Engineering and Lidar Scanning**
- **GSEN 6386 - Remote Sensing and Image Analysis**

All Geospatial Systems Engineering Track 2, Geospatial Data Science and Analytics, students must complete the following Core Courses:

- **GSEN 6365 - Spatial Database Design**
- **GSEN 6367 - Geospatial Data Mining**
- **GSEN 6383 - Advanced Geospatial Analytics**
- **GSEN 6384 - Geospatial Visualization Design**

IV. Elective Courses

Thesis option students must complete 12 semester hours and project option students must complete 18 semester hours from the courses listed below or from other interdisciplinary courses, as selected in consultation with their advisory committee, to provide a broad background in geospatial systems engineering or related fields:
Geospatial Systems Engineering Electives

Track 1: Geosensing Systems and UAS for Geomatics

- **GSEN 6330 - Spatial Systems Science** 3 sem. hrs.
- **GSEN 6355 - Geospatial Programming Techniques** 3 sem. hrs.
- **GSEN 6356 - Programming for Geospatial Data Science** 3 sem. hrs.
- **GSEN 6365 - Spatial Database Design** 3 sem. hrs.
- **GSEN 6367 - Geospatial Data Mining** 3 sem. hrs.
- **GSEN 6380 - Applied Geospatial Statistics** 3 sem. hrs.
- **GSEN 6381 - Cadastral Information Systems Design** 3 sem. hrs.
- **GSEN 6382 - Policy and Legal Aspects of Spatial information Systems** 3 sem. hrs.
- **GSEN 6383 - Advanced Geospatial Analytics** 3 sem. hrs.
- **GSEN 6384 - Geospatial Visualization Design** 3 sem. hrs.

Track 2: Geospatial Data Science and Analytics

- **GSEN 6330 - Spatial Systems Science** 3 sem. hrs.
- **GSEN 6355 - Geospatial Programming Techniques** 3 sem. hrs.
- **GSEN 6356 - Programming for Geospatial Data Science** 3 sem. hrs.
- **GSEN 6370 - UAS for Surveying and Mapping** 3 sem. hrs.
- **GSEN 6371 - Geopositioning Systems and Autonomous Navigation** 3 sem. hrs.
- **GSEN 6380 - Applied Geospatial Statistics** 3 sem. hrs.
- **GSEN 6381 - Cadastral Information Systems Design** 3 sem. hrs.
- **GSEN 6382 - Policy and Legal Aspects of Spatial information Systems** 3 sem. hrs.
- **GSEN 6385 - Photogrammetric Engineering and Lidar Scanning** 3 sem. hrs.
- **GSEN 6386 - Remote Sensing and Image Analysis** 3 sem. hrs.

V. Additional Courses

The following additional courses may be offered and substituted for any of the courses mentioned in II subject to approval by the student graduate mentor or committee chair.

- **GSEN 6390 - Advanced Topics** 3 sem. hrs.
- **GSEN 6396 - Directed Independent Study** 3 sem. hrs.
4. Additional Information

4.A. Master of Science Degree Requirements

Read the University Graduate Student Catalog.

The University Graduate Student Catalog is the official document that describes the GSEN and University requirements. The Graduate Student Catalog is your contract with the University and you are expected to have read and understood the requirements set forth within. A new catalog is produced every year; however, the catalog that you should follow is the catalog that was in effect when you were admitted to the program. You should always keep a paper copy of the catalog for reference. An online version of the catalog can be found at:
http://catalogreview.tamucc.edu/graduate.htm

The official University Catalog holds precedence over anything written in this section of the document referring to degree requirements. This document will cover the highlights of the catalog, but should not be used in lieu of the University Catalog.

Degree Requirements

The M.S. program will require a minimum of 36 credit hours exclusive of deficiencies, if any. All students are expected to have a minimum undergraduate background equivalent to each of the following courses:

GISC 1470 – Geospatial Systems I
GISC 2470 – Geospatial Plane Measurement I

A beginning graduate student, who, during advisement or admission, is judged deficient in the fundamentals of GIS or surveying may demonstrate an acceptable level of proficiency by either: taking the appropriate course for undergraduate credit; by attaining satisfactory scores on the final examinations of the appropriate undergraduate course; by taking other online courses as directed. A satisfactory score, in this case, shall be a “B”/”Certificate of Completion” or better. Such courses are regarded as foundation or leveling work and do not count as credit towards the total required hours for completion of the degree.

Specific M.S. degree requirements stipulate that:

A. A written thesis/project proposal that outlines the focus of the thesis/project shall be submitted to the student’s Advisory Committee for their comment and approval ideally by the second semester and no later than the third semester (exclusive of summer).

B. A thesis/project that shows independent judgment in developing and resolving a research problem must be written and approved by the student’s Advisory Committee.
C. Students must complete at least six semester credit hours per year towards the degree until the degree is completed. Failure to make this minimum progress will result in dismissal from the degree program with possible re-admission based on the catalog in effect at the time of readmission. A student who is actively pursuing a graduate project and has completed all other course work for the degree will be required to register for 3 credit hours continuously (two semesters a year, summers included) until the thesis/project is completed.

D. All requirements for the M.S. degree must be completed within six years, beginning from the date of first course registration.

E. Students may not enroll in any coursework outside of TAMUCC during the semester in which they intend to graduate.

F. All transfer work must be approved at least one semester prior to graduation term using the Course Transfer form. This form must be signed by the student’s Major Professor, Department Chair, and the Dean of Graduate Studies.

G. Thesis/Project defense will not be conducted during the summer break except by prior mutual consent of the student and Advisory Committee members.

H. Students must apply for graduation at least one semester prior to intended graduation date. (Deadlines can be found in SAIL). If a student does not graduate in the semester of application, he/she must complete the Graduation Cancellation form found in the Academic Advisor’s office. Completing this form will allow the student to re-enroll in GSEN 5395. The student must then re-apply for graduation.

4.B. Grades
The minimum grade for credit is “C”. A student is only allowed 6 hours of credit at a grade of “C”. A course in which the final grade is “C” or lower may be repeated for a higher grade. A graduate student may retake a maximum of two courses during graduate study in the University. The student may repeat each course only one time. All grades received for the course will be computed in the grade point average. For detailed information about calculation of grade point average (GPA), visit http://registrar.tamucc.edu/gpa.html.

A grade of “I” is given for course work not completed within the semester in which the student registered for the course. This grade indicates that, although the student was doing satisfactory work, the student was unable to complete the course for some reason beyond his/her control. The Program recognizes that at the graduate level a student occasionally may not be able to complete the course work within a semester, but considers repeated grades of “I” as inadequate progress. A student must remove an “I” grade within 1 semester of enrollment following assignment of the “I” grade or it automatically becomes an “F”.

Failure to maintain an overall “B” (3.0) average can result in dismissal from the degree program. Program policy is that if the student’s grade average for any semester falls below a “B”, the student is placed on probation for the succeeding semester. During the probationary period, students that do not maintain a “B” level work are assigned to the end of the list of students.
holding assistantships, are subject to loss of previously offered financial support, and may be dismissed from the degree program.

4.C. Course Loads

Full-Time Students

A full-time course load for a full-time student is considered to be nine credit hours per semester. You may take a lesser course load if you choose, however note that less than full-time status will affect eligibility for University scholarships. To exceed twelve credit hours per semester, a student must have the approval of the Program Coordinator, Department Chair and College Dean.

Students with Full-Time Jobs

If you are working a full-time job and plan on pursuing your graduate degree simultaneously, it is highly recommended that you limit your enrollment to a maximum of two regular graduate level courses a semester.

Students with International F1 Visa

International F1 Visa Students are required to take at least six (6) hours of credits on campus each semester as required by U.S. Immigration 8 C.F.R. § 214.2(f)(6)(i)(G) Additional credits above the six on campus can be taken online if so desired.

Students Holding an Assistantship

Students holding an assistantship must register for a minimum of nine credit course hours each semester the appointment is held. Students on an assistantship cannot carry more than twelve credit hours per semester without approval of the Program.

All Students

Any M.S. student who is using university facilities or staff time is required to register for at least three credit hours of course work during the semester they utilize said facilities or staff time.

4.D. Course Formats

The GSSE program delivers selected courses both an in-person and online format. Even though course is split into two sections (one section for each format of delivery), the students are considered as one cohort. The course material will be the same for in-person and online students, only the delivery method will differ.

When registering for courses, it is important that you register for the correct section of the course. Courses sections that are offered in-person will be designated as a 001 section. Course sections that are offered online will be designated as a W01 section. For example, GSEN5355.W01 is an online section of a course because of the W01 designation. GSEN5355.001 is the in-person section of the same course because of the 001 designation.
4.E. Advisement

Major Professor and Committee

All graduate students are admitted to the program with a graduate advisor for advising and will remain with the program advisor until they have completed their declaration of their major professor. As soon as the student has determined what aspect of Geospatial Surveying Engineering he/she wishes to investigate for his/her thesis/project, he/she is directed to the professor(s) whose interests are most closely related. Provided the professor(s) is willing to accept the student, he/she becomes the student’s major professor and the major professor will be his/her graduate advisor. Graduate advisor and major Professors must be regular members of the Graduate Faculty, a Ph.D., and full-time faculty of the Geospatial Systems Engineering Program.

For the M.S. program, a student must appoint (and have approval) an advisory committee consisting of the Major Professor and two additional faculty members. All members must be regular or provisional members of the Graduate Faculty and a majority must be from the Geospatial Systems Engineering Program. Paperwork declaring your Major Professor and Committee Members must be filed with the program secretary.

The prospective M.S. degree candidate and his/her advisory committee develop a Program of Study, in conformance with the interest of the student and the requirements of the degree. Normally, the Program of Study is developed during the student’s first semester after selection of the Major Professor and advisory committee. The program must constitute a logical whole and be approved by the student’s advisory committee, Graduate Coordinator, and Graduate School Dean. Only graduate level courses (5000 and above) can be listed in the Program of Study. Any change in the Program of Study subsequent to the initial approval must meet with signature approval of all Advisory Committee members.

Academic Advisor

The role of the Academic Advisor is to assist students with preparing degree plans and verifies successful completion of degree requirements. You should make an appointment to see the academic advisor as soon as possible to plan your course schedule and verify that your plan will meet degree requirements. Students living outside of the University area can make the appointment via email or phone. Students must have a degree plan filed by the end of the first semester of attendance in order to register for subsequent semesters.

The academic advisor for the program is:
Mrs. Ronnie Emanuel
Center for Instruction, Room 350
(361) 825-3928; ronnie.emanuel@tamucc.edu
4.F. Evaluation of Graduate Students
Each year the faculty reviews the progress of all graduate students. This review considers the student’s academic performance and work as an assistant, if applicable. Considerations normally examined include present and past levels of performance, promise of future intellectual growth, and factors relating to the student’s potential, such as perceptiveness; imagination; ingenuity in conceptualization; design; and accomplishment of research; and power to reason logically.

Each Major Professor is charged with communicating with the student the salient aspects of the faculty review of the student following each review.

4.G. Financial Assistance
Financial assistance in the form of assistantships or scholarships is available from a number of sources. Students on an assistantship must take a minimum of nine hours per semester. Scholarships are available through the University. All scholarship applications are applied for online via the Graduate office website http://gradschool.tamucc.edu/fundinginfo.html To be considered for scholarship monies, you must be a full time graduate student, which means you must be registered for a minimum of 9 credit hours per semester.

4.I. Admission to Candidacy (in the Program)
Prospective candidates for the M.S. degree are admitted to candidacy when:

a. All prerequisites for admission to the departmental graduate program have been satisfactorily completed;
b. The student’s Program of Study has been approved by the Major Professor, Advisory Committee, Graduate Coordinator, and the Graduate School Dean;
c. An average of 3.0 or higher has been maintained on all graduate courses taken;
d. A thesis/project proposal has been presented and approved by the Major Professor and Advisory Committee. A Program Thesis Approval Form should be obtained from the Program Degree Program Assistant before thesis presentation.

4.J. Summary of Procedural Steps toward the M.S. Degree
1. Obtain advisement from the Graduate Coordinator and Graduate Studies Committee until a Major Professor is selected.
2. Formulate a Program of Study with the Major Professor and Advisory Committee then record the Program of Study with the Academic Advisor (see Section D).
3. Complete all required course work (see Sections A, B, C).
4. Present a thesis/project proposal to be approved by the Major Professor and Advisory Committee. A thesis/project is not approved until the Major Professor and Advisory Committee have signed the thesis/project approval form.
5. Secure admission to status as prospective degree candidate for the M.S. degree (see section H)
6. Complete thesis/project under supervision of the Major Professor.

7. Graduate students must provide their Major Professor and Advisory Committee adequate time for review of the thesis/project proposal and final papers. The first draft of the thesis/project must be submitted to the Committee Chair during the first week of the semester the student intends to graduate. Students not providing adequate time for review may not be eligible for thesis/project defense as determined by the Major Professor and Advisory Committee.

Students encountering problems associated with the timely return of their thesis materials (2 to 8 weeks depending on the circumstances) from either the major professor or Reading Committee (#8 below) should report their concern to the Graduate Coordinator, who, in consultation with the Head, will inquire to the nature of the delay.

8. The thesis/project, approved by the Major Professor, is submitted to the student’s Advisory Committee no later than the end of the 4th week of the semester that the student plans to graduate. The Advisory Committee acts as a reading committee and represents the Graduate Faculty in determining the acceptability of the thesis/project. The responsibilities of the Reading Committee Chairperson are:
 a. to coordinate the reading and evaluation of the thesis/project after it has been submitted to the Reading Committee by the Major Professor;
 b. to communicate the salient points of the Reading Committee’s evaluation of the thesis/project to the Major Professor, and
 c. to verify that the recommendations of the Reading Committee made during the review process and the final oral exam are incorporated into the final copy of the thesis or dissertation by signing the cover page of the final copy immediately below the signature of the major professor.

9. Final Oral Examination covering student’s course work and thesis/project is conducted by the Major Professor and Reading Committee. Although actual conduct of this examination rests with the Examining Committee, the general policy of the Department is that:
 a. the student must appear in person (either on campus, or through online video conference) for the final oral examination which must be completed before the last day of class of the last full week of instruction; and
 b. the entire examination should last approximately thirty minutes to one hour; and
 c. the examination will start with a twenty minute discourse on the student’s thesis/project.

10. The thesis/project may be completed in one semester, however, with continuous registration, a student will be allowed up to one calendar year to complete the thesis/project.

11. Upon successful completion of the Final Oral Examination and final approval of the Committee, one hard copy and one digital copy of the final approved thesis/project must be submitted to the Program Coordinator for safekeeping for the Department.
5. General Guidelines for Courses and Labs
These guidelines are designed to inform scholars of their responsibilities and of the course requirements in order to make their courses a positive experience. The instructor is always available for consultation and discussion with students on any aspect of a course and of these general guidelines.

Courses will be conducted via the internet and/or e-mail, so the definition of “meetings” given below refers to any time that you spend studying and working on course work/labs/projects etc.

5.A Class Culture
1. Consider yourself as a scholar rather than a student. The term “student” may imply some passivity, whereas the term “scholar” implies active participation, understanding and searching. We will use these terms interchangeably with the meaning of “scholar” implied. Osmosis does not work in a learning environment!
2. Further, define yourself as a “thinking explorer”. You are responsible for your education; an instructor can only be a guide and a facilitator. An instructor cannot learn for you. If you come across something that really interests you, explore it further.
3. Your experience at this University should not consist of passing a series of courses to earn a degree. Your experience should rather be a series of activities that will give you an education.
4. Concentrate on “learning to learn”. You will have to be a life-long learner to survive in your chosen career.
5. There is no such thing as a stupid question; there is such a thing as a stupid answer. So ask questions, the instructor is taking all the risks! Ask questions of your instructor and of your fellow scholars. Many times questions are more important than answers.
6. The Internet is a tremendous resource and also a great danger. When you find information on the Internet, you have no idea if it is correct. View such information with caution. But, use the Internet to explore topics that interest you. Do not only prepare for the exam in a course – learn as much as you can on the topics introduced to you by the course material. You are responsible for the extent of your education! READ MINDFULLY !!!!
7. In addition to details of the syllabus given in class, the syllabus for the course includes all the chapters of the required textbook/s unless indicated otherwise by the instructor.

5.B. Course Procedures and Regulations
1. The final letter grade for the class will be based on the raw composite numerical score obtained from the weighted average of the tests, quizzes, exams, labs, etc. as indicated by the instructor and stated in the course syllabus.
2. All University rules, regulations and expected student conduct apply to this course. Students are held responsible for the information given in the current Catalog and Student Handbook.

3. All labs, assignments, etc. must be handed in on the assigned due date. Scholars having problems must notify the instructor well before the due date. Marks will be deducted for poor and unprofessional presented work.

4. Labs, etc. handed in after the due date may be subject to a penalty of loss of marks (see course syllabus for policy).

5. Scholars are asked to take special note of the penalties, which the University attaches to Academic Dishonesty. Consult the Student Handbook.

6. All work handed in to the instructor must be the student's own work. Extracts, excerpts, etc. from the work of others must be suitably noted, acknowledged and properly referenced. Any Group Work will be judged in the same way. That is, it is the work of the group and the extracts, excerpts, etc. of others must be acknowledged.

7. All written and graphical work handed in must be presented neatly printed or in digital format as required by the instructor. Student's written work will be judged on written communication skills, critical thinking and problem solving ability.

8. There are NO provisions for making up missed exams except in cases where prior arrangements have been made and agreed to by the instructor.

9. Students must keep their given university e-mail address (i.e. firstname.lastname@islander.tamucc.edu). This will be the means of the instructor communicating with students.

10. All work submitted to the instructor (via e-mail or other means) must be clearly marked with the student's name and the name and number of the course.

11. The instructor reserves the right to make changes to the above with due notice to the students. These changes will be announced to the class (see 9 above) and each student is responsible for keeping herself/himself informed of such changes.

6. Course Instruction Software
Courses are taught online using software named Blackboard. Blackboard is a suite of course management software used by professors to post lectures, assignments, discussion boards, grades, etc... Depending on the professor’s preference, students will submit assignments through Blackboard or some other predetermined method outlined in the course syllabus.

Students should check Blackboard often for new course material.

Should a professor require a synchronous meeting of students (also known as a web meeting), the professor will set up a meeting time and provide a link to the meeting via email or Blackboard. The software used for these web meetings is named Centra. If the professor chooses, recordings of the web meetings may be made available to students.
Regardless of how the course is administered, professors rely heavily on email for communication with students. As such, you must have a university email address and check your email daily.

6.A. University Email address
This program relies heavily on email for interaction with students (and vice versa). It is very important that you set up your university email address as soon as possible and check it often. Your email address will be in the form: firstname.lastname@islander.tamucc.edu Additionally, some professors will contact you through Blackboard, so be sure to check your Blackboard email often as well.

To obtain your email address, visit http://islander.tamucc.edu and click on “Get New Computer Account” link in the header of the page. You will be taken to the new user website. Select “Islander Student E-Mail,” enter your student ID (also known as your A-number) and your date of birth, then click Submit and follow the instructions.

You can check your email by visiting http://islander.tamucc.edu and clicking on “Islander Student Email” in the header of the page.

6.B. SAIL – Registering for Classes and Updating Personal Information
SAIL is the university system for class registration, viewing student records, making tuition payments, and parking administration. It is important to verify your contact information in SAIL as it contains the official records that we use to contact you.

To log into SAIL, visit http://sail.tamucc.edu If you do not know your student ID or PIN number, click “Get my student ID” on the left hand side of the screen. If you know your student ID and PIN, click on the blue “Login to S.A.I.L.” button. Your student ID and PIN are known as your Banner ID. You will use these credentials to log into Blackboard (see 3.C).

On the next screen, enter your ID and PIN then click the Login button. If you have forgotten your PIN, click the Forgot PIN? Button and follow the instructions.

6.C. Blackboard
Blackboard can be access by navigating to http://iol.tamucc.edu Blackboard is also known as “Island Online” and the two terms are used interchangeably. You will use your Banner ID and PIN to log in. These are the same credentials used to log into SAIL (see 3.B).

To log in to Blackboard (Figure 1):
2. Choose Blackboard 9 radio button.
3. Use your A-Number as the user name.
4. Use your Banner PIN as your password.
5. Click Log in button.

![Figure 1 – Blackboard Login](image)

Using Blackboard

Blackboard has many capabilities that would take many pages to explain. The best way to gain familiarity with Blackboard is simply to use it. To get you started, a brief introduction video is available to view at: http://gisc.tamucc.edu/

7. Technical Requirements

Since the courses for this degree are taught online, students are required to maintain the following technical requirements to ensure access to course materials. Note that each course maintains a different set of requirements, but these general requirements should suffice for most courses.

- Hardware requirements
 - Relatively new computer with at least:
 - Pentium 4 (or equivalent) processor
 - 1GB RAM (2GB or greater recommended)
 - 20GB of free hard drive space
 - Sound card
 - Speakers/headphones and microphone
 - High speed internet access.
- Software Requirements
 - Microsoft Windows XP Service Pack 3 or greater
 - Word Processor software capable of reading and producing .doc/.docx (Microsoft Word) documents.
 - Spreadsheet software capable of reading and producing .xls/.xlsx (Microsoft Excel) documents.
 - Presentation software capable of reading and producing .ppt/.pptx (Microsoft PowerPoint) documents.
 - Adobe Acrobat Reader or software able to read Adobe PDF documents (.pdf).
 - Video player software (Windows Media Player and/or Apple Quicktime).
 - Java runtime environment.
Decompression software able to uncompress .zip files. We recommend the free software, 7-zip.

- Other requirements
 - Create and check often your university email.
 (firstname.lastname@islander.tamucc.edu)

8. New Graduate Student Checklist
(to be completed as soon as you are accepted into the Program)

☐ Obtain and read a copy of the University Graduate Catalog. Remember, this is your contract! (refer to section 4)

☐ Acquire your University email address. (refer to section 6.A.)

☐ Join the GSEN email list-serv. Many important university, program, and job announcements go across on this email list-serv. To join, visit http://sci.tamucc.edu/mailman/listinfo/gsen-list

☐ Log into SAIL to register for courses, pay your tuition bill and verify that your contact information is correct. (refer to section 6.B.)

☐ Verify that your computer system meets the requirements for the program. (refer to section 4)

☐ Successfully log into Blackboard on the Island Online. (refer to section 6.C.)

☐ Email a passport sized picture of yourself to Mrs. Cyndi Duff (cynthia.duff@tamucc.edu) by the end of the first month of your attendance so the faculty and staff know who you are. Faculty and Staff bios and photos can be found on the program website so you know who we are (http://gisc.tamucc.edu).

Pictures should follow these guidelines:
 - Picture should be of your face, shoulders up, without sunglasses or hats.
 - You should be professional in appearance.

☐ Contact the academic advisor to discuss your degree plan. (refer to section 4.E.)

☐ Choose a major professor and committee (complete by the end of the first semester). (refer to section 4.E.)
If you have any general questions or questions regarding admissions, please contact Dr. Lucy Huang at (361)825-2646 or at Lucy.Huang@tamucc.edu.

If you have any questions concerning getting set up for the semester, you may contact Dr. Lucy Huang at (361)825-2646 or at Lucy.Huang@tamucc.edu or any of the other GSSE Faculty.