Baryogenesis and Neutrino Mass
A Common Link and Experimental Signatures

Bhupal Dev
Washington University in St. Louis

XIth International Conference of Interconnections between Particle Physics and Cosmology (PPC 2017)

Texas A&M University Corpus Christi

May 22, 2017
$\eta_{\Delta B} \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 6.1 \times 10^{-10}$

One number \rightarrow BSM Physics
Baryogenesis

- Dynamical generation of baryon asymmetry.
- **Basic ingredients:** [Sakharov ’67]
 - B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.

The Standard Model has all the basic ingredients, but CKM CP violation is too small (by ~ 10 orders of magnitude).

Observed Higgs boson mass is too large for a strong first-order phase transition. Requires New Physics!
Baryogenesis

- Dynamical generation of baryon asymmetry.
- **Basic ingredients:** [Sakharov ’67]
 - B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.

The Standard Model has all the basic ingredients, but
- CKM CP violation is too small (by ~ 10 orders of magnitude).
- Observed Higgs boson mass is too large for a strong first-order phase transition.

Requires New Physics!
Many ideas, some of which can be realized down to the (sub)TeV scale, e.g.:

- **EW baryogenesis** [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
- **(Low-scale) Leptogenesis** [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; ...]
- **Cogenesis** [Kaplan '92; Farrar, Zaharijas '06; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; ...]
- **WIMPy baryogenesis** [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; ...]
Many ideas, some of which can be realized down to the (sub)TeV scale, e.g.

- **EW baryogenesis** [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
- **(Low-scale) Leptogenesis** [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; ...]
- **Cogeneration** [Kaplan '92; Farrar, Zaharijas '06; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; ...]
- **WIMPy baryogenesis** [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; ...]

Can also go below the EW scale, independent of sphalerons, e.g.

- **Post-sphaleron baryogenesis** [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
- **Dexiogenesis** [BD, Mohapatra '15; Davoudiasl, Zhang '15]
Many ideas, some of which can be realized down to the (sub)TeV scale, e.g.:

- **EW baryogenesis** [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
- **(Low-scale) Leptogenesis** [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; ...]
- **Cogenesis** [Kaplan '92; Farrar, Zaharijas '06; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; ...]
- **WIMPy baryogenesis** [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; ...]

Can also go below the EW scale, independent of sphalerons, e.g.:

- **Post-sphaleron baryogenesis** [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
- **Dexiogenesis** [BD, Mohapatra '15; Davoudiasl, Zhang '15]

Testable effects: collider signatures, gravitational waves, electric dipole moment, $0\nu\beta\beta$, lepton flavor violation, $n - \bar{n}$ oscillation, ...
Many ideas, some of which can be realized down to the (sub)TeV scale, e.g.

- **EW baryogenesis** [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
- **(Low-scale) Leptogenesis** [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; ...]
- **Cogenesis** [Kaplan '92; Farrar, Zaharijas '06; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; ...]
- **WIMPy baryogenesis** [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; ...]

Can also go below the EW scale, independent of sphalerons, e.g.

- **Post-sphaleron baryogenesis** [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
- **Dexiogenesis** [BD, Mohapatra '15; Davoudiasl, Zhang '15]

Testable effects: collider signatures, gravitational waves, electric dipole moment, $0\nu\beta\beta$, lepton flavor violation, $n - \bar{n}$ oscillation, ...
Leptogenesis

A cosmological consequence of the seesaw mechanism.

- Provides a common link between neutrino mass and baryon asymmetry.
- Naturally satisfies the Sakharov conditions.
 - L violation due to the Majorana nature of heavy RH neutrinos.
 - $\mathcal{L} \rightarrow \mathcal{B}$ through sphaleron interactions.
 - New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases).
 - Departure from thermal equilibrium when $\Gamma_N \ll H$.

[Fukugita, Yanagida ’86]
Popularity of Leptogenesis
Popularity of Leptogenesis

\[\sim 3000 \text{ citations} \]

Neutrino oscillation discovered
Three basic steps:

1. Generation of L asymmetry by heavy Majorana neutrino decay:

$$ N_1 \rightarrow H \ell $$

2. Partial washout of the asymmetry due to inverse decay (and scatterings):

$$ H \rightarrow N_1 \ell $$

3. Conversion of the left-over L asymmetry to B asymmetry at $T > T_{sph}$.

$$ \text{Sphaleron} $$
Boltzmann Equations

[Buchmüller, Di Bari, Plümacher ’02]

\[
\frac{dN_N}{dz} = -(D + S)(N_N - N_N^{eq}),
\]

\[
\frac{dN_{\Delta L}}{dz} = \varepsilon D(N_N - N_N^{eq}) - N_{\Delta L} W,
\]

(where \(z = m_{N_1}/T\) and \(D, S, W = \Gamma_{D,S,W}/Hz\) for decay, scattering and washout rates.)

- Final baryon asymmetry:

\[
\eta_{\Delta B} = d \cdot \varepsilon \cdot \kappa_f
\]

- \(d \simeq \frac{28}{51} \frac{1}{27} \simeq 0.02\) (\(\mathcal{L} \to \mathcal{B}\) conversion at \(T_c\) + entropy dilution from \(T_c\) to recombination epoch).

- \(\kappa_f \equiv \kappa(z_f)\) is the final efficiency factor, where

\[
\kappa(z) = \int_{z_i}^{z} dz' \frac{D}{D + S} \frac{dN_N}{dz'} \ e^{-\int_{z'}^{z_f} dz'' W(z'')}
\]
Importance of self-energy effects

\[|\Gamma(N_\alpha \rightarrow L_l \Phi) - \Gamma(N_\alpha \rightarrow L_c L_c^\dagger)| \leq |\frac{\epsilon_l \alpha}{\sum_k [\Gamma(N_\alpha \rightarrow L_k \Phi) + \Gamma(N_\alpha \rightarrow L_c L_c^\dagger)]}| \]

\[\equiv \frac{|\hat{h}_{l \alpha}|^2 - |\hat{h}_{l \alpha}^c|^2}{(\hat{h}^* \hat{h})_{\alpha \alpha} + (\hat{h}_{\alpha}^c \hat{h}_{\alpha}^c)_{\alpha \alpha}} \]

with the one-loop resummed Yukawa couplings

\[\hat{h}_{l \alpha} = \hat{h}_{l \alpha} - i \sum_{\beta, \gamma} |\epsilon_{\alpha \beta \gamma}| \hat{h}_{l \beta} \]

\[\times \frac{m_\alpha (m_\alpha A_{\alpha \beta} + m_\beta A_{\beta \alpha}) - i R_{\alpha \gamma} [m_\alpha A_{\gamma \alpha} (m_\alpha A_{\alpha \gamma} + m_\gamma A_{\gamma \alpha}) + m_\beta A_{\beta \gamma} (m_\alpha A_{\gamma \alpha} + m_\gamma A_{\alpha \gamma})]}{m_\alpha^2 - m_\beta^2 + 2i m_\alpha^2 A_{\alpha \beta} + 2i \text{Im}(R_{\alpha \gamma}) [m_\alpha^2 A_{\beta \gamma}^2 + m_\beta m_\gamma \text{Re}(A_{\beta \gamma}^2)]} \]

\[R_{\alpha \beta} = \frac{2m_\beta}{m_\alpha^2 - m_\beta^2 + 2i m_\alpha^2 A_{\alpha \beta}} \quad ; \quad A_{\alpha \beta}(\hat{h}) = \frac{1}{16\pi} \sum_l \hat{h}_{l \alpha} \hat{h}_{l \beta}^* . \]
Vanilla Leptogenesis

- Hierarchical heavy neutrino spectrum \((m_{N_1} \ll m_{N_2} < m_{N_3}) \).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

\[
\varepsilon_{1}\text{max} = \frac{3}{16 \pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m^2_{\text{atm}}}
\]

- Lower bound on \(m_{N_1} \): [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

\[
m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m^2_{\text{atm}}}} \right)^{\kappa_f^{-1}}
\]
Hierarchical heavy neutrino spectrum \((m_{N_1} \ll m_{N_2} < m_{N_3}) \).
Both vertex correction and self-energy diagrams are relevant.
For type-I seesaw, the maximal CP asymmetry is given by

\[
\varepsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\text{atm}}^2}
\]

Lower bound on \(m_{N_1} \): [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

\[
m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}
\]

Experimentally inaccessible!
Also leads to a lower limit on the reheating temperature \(T_{\text{rh}} \gtrsim 10^9 \text{ GeV}. \)
In supergravity models, need \(T_{\text{rh}} \lesssim 10^6 - 10^9 \text{ GeV} \) to avoid the gravitino problem.
[Khlopov, Linde '84; Ellis, Kim, Nanopoulos '84; Cyburt, Ellis, Fields, Olive '02; Kawasaki, Kohri, Moroi, Yotsuyanagi '08]
Also in conflict with the Higgs naturalness bound \(m_N \lesssim 10^7 \text{ GeV}. \) [Vissani '97; Clarke, Foot, Volkas '15; Bambhaniya, BD, Goswami, Khan, Rodejohann '16]
Dominant self-energy effects on the CP-asymmetry (ε-type) [Flanz, Paschos, Sarkar ’95; Covi, Roulet, Vissani ’96].

Resonantly enhanced, even up to order 1, when $\Delta m_N \sim \Gamma_N/2 \ll m_{N_1,2}$.

[Flanz, Paschos, Sarkar ’95; Pilaftsis, Underwood ’03]

The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector.

Heavy neutrino mass scale can be as low as the EW scale.

[Flanz, Paschos, Sarkar ’95; Pilaftsis, Underwood ’03; Deppisch, Pilaftsis ’10; BD, Millington, Pilaftsis, Teresi ’14]

A testable scenario at both Energy and Intensity Frontiers.
Flavor effects important at low scale [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto '06; Nardi, Nir, Roulet, Racker '06; De Simone, Riotto '06; Blanchet, Di Bari, Jones, Marzola '12; BD, Millington, Pilaftsis, Teresi '14]

Two sources of flavor effects:
- Heavy neutrino Yukawa couplings h_{i}^{α} [Pilaftsis '04; Endoh, Morozumi, Xiong '04]
- Charged lepton Yukawa couplings y_{j}^{k} [Barbieri, Creminelli, Strumia, Tetrasis '00]

Three distinct physical phenomena: mixing, oscillation and decoherence.

Captured consistently in the Boltzmann approach by the fully flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi '14; '15]
Collision Rates for Decay and Inverse Decay

\[n^\Phi [n^L]_l^k [\gamma(L\Phi \rightarrow N)]_k^l \beta \rightarrow \text{rank-4 tensor} \]
Collision Rates for $2 \leftrightarrow 2$ Scattering

\[n^\Phi [n^L]^k_l [\gamma(L\Phi \rightarrow L\Phi)]^l_m \rightarrow \text{rank-4 tensor} \]
The diagram illustrates the key result for the system described in the text. The figure shows the contributions of mixing and oscillations to the overall factor, with a factor of 2 enhancement compared to the isolated contributions for weakly-resonant RL.

Mathematically, the results are given by:

\[
\delta \eta^L_{\text{mix}} \approx \frac{g_N}{2} \frac{3}{2Kz} \sum_{\alpha \neq \beta} \frac{\Im \left(\hat{h}^\dagger \hat{h} \right)_{\alpha\beta}}{\left(\hat{h}^\dagger \hat{h} \right)_{\alpha\alpha} \left(\hat{h}^\dagger \hat{h} \right)_{\beta\beta}} \left(\frac{M_N^2 - M_N^2}{M_N^2} \right) M_N \hat{\Gamma}(0)_{\beta\beta}
\]

\[
\delta \eta^L_{\text{osc}} \approx \frac{g_N}{2} \frac{3}{2Kz} \sum_{\alpha \neq \beta} \frac{\Im \left(\hat{h}^\dagger \hat{h} \right)_{\alpha\beta}}{\left(\hat{h}^\dagger \hat{h} \right)_{\alpha\alpha} \left(\hat{h}^\dagger \hat{h} \right)_{\beta\beta}} \left(\frac{M_N^2 - M_N^2}{M_N^2} \right) M_N \left(\hat{\Gamma}(0)_{\alpha\alpha} + \hat{\Gamma}(0)_{\beta\beta} \right)
\]

Where \(\delta \eta^L \) represents the overall enhancement factor, \(M_N \) is the mass, \(\hat{\Gamma}(0) \) is the zero-frequency decay rate, and \(\hat{h} \) is the field operator.
Based on residual leptonic flavor $G_f = \Delta(3n^2)$ or $\Delta(6n^2)$ (with n even, $3 \nmid n$, $4 \nmid n$) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Ziegler '12]

CP symmetry is given by the transformation $X(s)(r)$ in the representation r and depends on the integer parameter s, $0 \leq s \leq n - 1$. [Hagedorn, Meroni, Molinaro '14]
Based on residual leptonic flavor $G_f = \Delta(3n^2)$ or $\Delta(6n^2)$ (with n even, $3 \nmid n$, $4 \nmid n$) and CP symmetries. [Luhn, Nasri, Ramond ’07; Escobar, Luhn ’08; Feruglio, Hagedorn, Zieglar ’12]

CP symmetry is given by the transformation $X(s)(r)$ in the representation r and depends on the integer parameter s, $0 \leq s \leq n - 1$. [Hagedorn, Meroni, Molinaro ’14]

Dirac neutrino Yukawa matrix must be invariant under Z_2 and CP, i.e. under the generator Z of Z_2 and $X(s)$. [BD, Hagedorn, Molinaro (in prep)]

$$Z^\dagger(3) Y_D Z(3') = Y_D \quad \text{and} \quad X^*(3) Y_D X(3') = Y_D^* .$$

$$Y_D = \Omega(s)(3) R_{13}(\theta_L) \begin{pmatrix} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_3 \end{pmatrix} R_{13}(-\theta_R) \Omega(s)(3')^\dagger .$$

The unitary matrices $\Omega(s)(r)$ are determined by the CP transformation $X(s)(r)$.

Form of the RH neutrino mass matrix invariant under flavor and CP symmetries:

$$M_R = M_N \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
Six real parameters: $y_i, \theta_{L,R}, M_N$.

$\theta_L \approx 0.18(2.96)$ gives $\sin^2 \theta_{23} \approx 0.605(0.395)$, $\sin^2 \theta_{12} \approx 0.341$ and $\sin^2 \theta_{13} \approx 0.0219$ (within 3σ of current global-fit results).

Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^2 = \frac{\nu^2}{M_N} \left\{ \begin{pmatrix} y_1^2 \cos 2\theta_R & 0 & y_1 y_3 \sin 2\theta_R \\ 0 & y_2^2 & 0 \\ y_1 y_3 \sin 2\theta_R & 0 & -y_3^2 \cos 2\theta_R \end{pmatrix} \begin{pmatrix} y_1^2 \cos 2\theta_R & 0 & y_1 y_3 \sin 2\theta_R \\ 0 & y_2^2 & 0 \\ y_1 y_3 \sin 2\theta_R & 0 & y_3^2 \cos 2\theta_R \end{pmatrix} \right\}$$

(s even),

(s odd).
Fixing Model Parameters

- Six real parameters: \(y_i, \theta_{L,R}, M_N \).
- \(\theta_L \approx 0.18(2.96) \) gives \(\sin^2 \theta_{23} \approx 0.605(0.395) \), \(\sin^2 \theta_{12} \approx 0.341 \) and \(\sin^2 \theta_{13} \approx 0.0219 \) (within 3\(\sigma \) of current global-fit results).
- Light neutrino masses given by the type-I seesaw:

\[
M^2_\nu = \frac{v^2}{M_N} \begin{cases}
\begin{pmatrix}
 y_1^2 \cos 2\theta_R & 0 & y_1 y_3 \sin 2\theta_R \\
 0 & y_2^2 & 0 \\
 y_1 y_3 \sin 2\theta_R & 0 & -y_3^2 \cos 2\theta_R \\
 -y_1^2 \cos 2\theta_R & 0 & -y_1 y_3 \sin 2\theta_R \\
 0 & y_2^2 & 0 \\
 -y_1 y_3 \sin 2\theta_R & 0 & y_3^2 \cos 2\theta_R
\end{pmatrix} & (s \text{ even}), \\
\begin{pmatrix}
 -y_1^2 \cos 2\theta_R & 0 & -y_1 y_3 \sin 2\theta_R \\
 0 & y_2^2 & 0 \\
 y_1^2 \cos 2\theta_R & 0 & y_1 y_3 \sin 2\theta_R \\
 0 & y_2^2 & 0 \\
 y_1 y_3 \sin 2\theta_R & 0 & -y_3^2 \cos 2\theta_R \\
 -y_1^2 \cos 2\theta_R & 0 & y_3^2 \cos 2\theta_R
\end{pmatrix} & (s \text{ odd}).
\end{cases}
\]

- For \(y_1 = 0 \) (\(y_3 = 0 \)), we get strong normal (inverted) ordering, with \(m_{\text{lightest}} = 0 \).

\[
\text{NO: } y_1 = 0, \quad y_2 = \pm \sqrt{\frac{M_N \sqrt{\Delta m^2_{\text{sol}}}}{v}}, \quad y_3 = \pm \sqrt{\frac{M_N \sqrt{\Delta m^2_{\text{atm}}}}{\cos 2\theta_R v}}
\]

\[
\text{IO: } y_3 = 0, \quad y_2 = \pm \sqrt{\frac{M_N \sqrt{|\Delta m^2_{\text{atm}}|}}{v}}, \quad y_1 = \pm \sqrt{\frac{M_N \sqrt{|\Delta m^2_{\text{atm}}| - \Delta m^2_{\text{sol}}}}{|\cos 2\theta_R| v}}
\]

- Only free parameters: \(M_N \) and \(\theta_R \).
Low Energy CP Phases and $0\nu\beta\beta$

- Dirac phase is trivial: $\delta = 0$.
- For $m_{\text{lightest}} = 0$, only one Majorana phase α, which depends on the chosen CP transformation:
 \[
 \sin \alpha = (-1)^{k+r+s} \sin 6 \phi_s \quad \text{and} \quad \cos \alpha = (-1)^{k+r+s+1} \cos 6 \phi_s \quad \text{with} \quad \phi_s = \frac{\pi S}{\eta},
 \]
 where $k = 0$ ($k = 1$) for $\cos 2 \theta_R > 0$ ($\cos 2 \theta_R < 0$) and $r = 0$ ($r = 1$) for NO (IO).
- Restricts the light neutrino contribution to $0\nu\beta\beta$:
 \[
 m_{\beta\beta} \approx \frac{1}{3} \left\{ \begin{array}{ll}
 \sqrt{\Delta m^2_{\text{sol}}} + 2 (-1)^{s+k+1} \sin^2 \theta_L e^{6i\phi_s} \sqrt{\Delta m^2_{\text{atm}}} & \text{(NO)}
 \end{array} \right.
 \]
 \[
 \left| 1 + 2 (-1)^{s+k} e^{6i\phi_s} \cos^2 \theta_L \right| \sqrt{\Delta m^2_{\text{atm}}} & \text{(IO)}
 \right.
 \]
- For $n = 26$, $\theta_L \approx 0.18$ and best-fit values of Δm^2_{sol} and Δm^2_{atm}, we get
 \[
 0.0019 \text{eV} \lesssim m_{\beta\beta} \lesssim 0.0040 \text{eV} \quad \text{(NO)}
 \]
 \[
 0.016 \text{eV} \lesssim m_{\beta\beta} \lesssim 0.048 \text{eV} \quad \text{(IO)}
 \]
At leading order, three degenerate RH neutrinos. Higher-order corrections can break the residual symmetries, giving rise to a quasi-degenerate spectrum:

\[M_1 = M_N (1 + 2 \kappa) \quad \text{and} \quad M_2 = M_3 = M_N (1 - \kappa). \]

CP asymmetries in the decays of \(N_i \) are given by

\[\varepsilon_{i\alpha} \approx \sum_{j \neq i} \text{Im} \left(\hat{Y}_{D,\alpha i}^{*} \hat{Y}_{D,\alpha j} \right) \text{Re} \left(\left(\hat{Y}_{D}^{\dagger} \hat{Y}_{D} \right)_{ij} \right) F_{ij} \]

\(F_{ij} \) are related to the regulator in RL and are proportional to the mass splitting of \(N_i \).

We find \(\varepsilon_{3\alpha} = 0 \) and

\[\varepsilon_{1\alpha} \approx \frac{y_2 y_3}{9} \left(-2 y_2^2 + y_3^2 (1 - \cos 2 \theta_R) \right) \sin 3 \phi_s \sin \theta_R \sin \theta_{L,\alpha} F_{12} \quad (\text{NO}) \]

\[\varepsilon_{1\alpha} \approx \frac{y_1 y_2}{9} \left(-2 y_2^2 + y_1^2 (1 + \cos 2 \theta_R) \right) \sin 3 \phi_s \cos \theta_R \cos \theta_{L,\alpha} F_{12} \quad (\text{IO}) \]

with \(\theta_{L,\alpha} = \theta_L + \rho_\alpha \frac{4\pi}{3} \) and \(\rho_e = 0, \rho_\mu = 1, \rho_\tau = -1 \).

\(\varepsilon_{2\alpha} \) are the negative of \(\varepsilon_{1\alpha} \) with \(F_{12} \) being replaced by \(F_{21} \).
Correlation between BAU and $0\nu\beta\beta$
Correlation between BAU and $0\nu\beta\beta$
Correlation between BAU and $0^{\nu}\beta\beta$
For RH Majorana neutrinos, $\Gamma_\alpha = M_\alpha (\hat{Y}_D^\dagger \hat{Y}_D)_{\alpha\alpha} / (8\pi)$. We get

$$\Gamma_1 \approx \frac{M_N}{24\pi} \left(2y_1^2 \cos^2 \theta_R + y_2^2 + 2y_3^2 \sin^2 \theta_R \right),$$

$$\Gamma_2 \approx \frac{M_N}{24\pi} \left(y_1^2 \cos^2 \theta_R + 2y_2^2 + y_3^2 \sin^2 \theta_R \right),$$

$$\Gamma_3 \approx \frac{M_N}{8\pi} \left(y_1^2 \sin^2 \theta_R + y_3^2 \cos^2 \theta_R \right).$$

For $y_1 = 0$ (NO), $\Gamma_3 = 0$ for $\theta_R = (2j + 1)\pi/2$ with integer j.

For $y_3 = 0$ (IO), $\Gamma_3 = 0$ for $j\pi$ with integer j.

In either case, N_3 is an ultra long-lived particle.

Suitable for MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles) [Coccaro, Curtin, Lubatti, Russell, Shelton '16; Chou, Curtin, Lubati '16]

In addition, $N_{1,2}$ can have displaced vertex signals at the LHC.
$L \text{ (m)}$

θ_R/π

N_1 (red), N_2 (blue), N_3 (green).

$M_N=150$ GeV (dashed), 250 GeV (solid).
Decay Length

\[\frac{\theta_R}{\pi} \]

\[L (m) \]

\[10^{-6} \quad 0.001 \quad 1 \quad 1000 \]

\[0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \]

\[N_1 \text{ (red), } N_2 \text{ (blue), } N_3 \text{ (green).} \]

\[M_N=150 \text{ GeV (dashed), } 250 \text{ GeV (solid).} \]
Collider Signal

- Need an efficient production mechanism.
- In our scenario, $y_i \lesssim 10^{-6}$ suppresses the Drell-Yan production

$$pp \rightarrow W(*) \rightarrow N_i \ell_\alpha,$$

and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]

- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.
Collider Signal

- Need an efficient production mechanism.
- In our scenario, $y_i \lesssim 10^{-6}$ suppresses the Drell-Yan production
 $$pp \rightarrow W^{(*)} \rightarrow N_i \ell_\alpha,$$
 and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]
- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.
- We consider a minimal $U(1)_{B-L}$ extension.
- Production cross section is no longer Yukawa-suppressed, while the decay is, giving rise to displaced vertex. [Deppisch, Desai, Valle '13]
At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.
At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.
Falsifying Leptogenesis at the LHC

- An observation of LNV signal at a given energy scale will falsify leptogenesis above that scale. [Deppisch, Harz, Hirsch ’14]
- Due to the large dilution/washout effects induced by related process.
- In specific models, can make this argument more concrete and falsify leptogenesis at all scales.
- In the Z' case, leptogenesis constraints put a lower bound on $M_{Z'}$. [Blanchet, Chacko, Granor, Mohapatra ’09; BD, Hagedorn, Molinaro (in prep)]
Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.

Resonant Leptogenesis provides a way to test this idea in laboratory experiments.

Flavor effects play a crucial role in the calculation of lepton asymmetry.

Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach.

Approximate analytic solutions are available for a quick pheno analysis.
Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.

Resonant Leptogenesis provides a way to test this idea in laboratory experiments.

Flavor effects play a crucial role in the calculation of lepton asymmetry.

Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach.

Approximate analytic solutions are available for a quick pheno analysis.

Presented a predictive RL model based on residual flavor and CP symmetries.

Correlation between BAU and $0^\nu\beta\beta$.

Correlation between BAU and LNV signals (involving displaced vertex) at the LHC.

Can probe neutrino mass hierarchy (complementary to oscillation experiments).

Leptogenesis can be falsified at the LHC.
Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe. Resonant Leptogenesis provides a way to test this idea in laboratory experiments. Flavor effects play a crucial role in the calculation of lepton asymmetry. Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach. Approximate analytic solutions are available for a quick pheno analysis.

Presented a predictive RL model based on residual flavor and CP symmetries. Correlation between BAU and $0^{\nu}\beta\beta$. Correlation between BAU and LNV signals (involving displaced vertex) at the LHC. Can probe neutrino mass hierarchy (complementary to oscillation experiments). Leptogenesis can be falsified at the LHC.
Backup Slides
A Minimal Model of RL

- Resonant ℓ-genesis (RLℓ). [Pilaftsis (PRL '04); Deppisch, Pilaftsis '10]
- Minimal model: $O(N)$-symmetric heavy neutrino sector at a high scale μ_X.
- Small mass splitting at low scale from RG effects.

\[M_N = m_N 1 + \Delta M_{N}^{\text{RG}}, \text{ with } \Delta M_{N}^{\text{RG}} = -\frac{m_N}{8\pi^2} \ln \left(\frac{\mu_X}{m_N} \right) \text{Re} \left[h^\dagger(\mu_X) h(\mu_X) \right]. \]

- An example of RLτ with $U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$ flavor symmetry:

\[
\begin{pmatrix}
0 & ae^{-i\pi/4} & ae^{i\pi/4} \\
0 & be^{-i\pi/4} & be^{i\pi/4} \\
0 & 0 & 0
\end{pmatrix} + \delta h,
\]

\[
\delta h = \begin{pmatrix}
\epsilon_e & 0 & 0 \\
\epsilon_\mu & 0 & 0 \\
\epsilon_\tau & \kappa_1 e^{-i(\pi/4-\gamma_1)} & \kappa_2 e^{i(\pi/4-\gamma_2)}
\end{pmatrix},
\]
A Next-to-minimal RL_ℓ Model

[BD, Millington, Pilaftsis, Teresi '15]

- Asymmetry vanishes at $\mathcal{O}(h^4)$ in minimal RL_ℓ.
- Add an additional flavor-breaking ΔM_N:

\[
M_N = m_N 1 + \Delta M_N + \Delta M_N^{\text{RG}}, \quad \text{with} \quad \Delta M_N = \begin{pmatrix}
\Delta M_1 & 0 & 0 \\
0 & \Delta M_2/2 & 0 \\
0 & 0 & -\Delta M_2/2
\end{pmatrix},
\]

\[
h = \begin{pmatrix}
0 & a e^{-i\pi/4} & a e^{i\pi/4} \\
0 & b e^{-i\pi/4} & b e^{i\pi/4} \\
0 & c e^{-i\pi/4} & c e^{i\pi/4}
\end{pmatrix} + \begin{pmatrix}
\epsilon_e & 0 & 0 \\
\epsilon_\mu & 0 & 0 \\
\epsilon_\tau & 0 & 0
\end{pmatrix}.
\]

- Light neutrino mass constraint:

\[
M_\nu \simeq -\frac{v^2}{2} h M_N^{-1} h^T \simeq \frac{v^2}{2m_N} \begin{pmatrix}
\frac{\Delta m_N}{m_N} a^2 - \epsilon_e^2 & \frac{\Delta m_N}{m_N} ab - \epsilon_e \epsilon_\mu & -\epsilon_e \epsilon_\tau \\
\frac{\Delta m_N}{m_N} ab - \epsilon_e \epsilon_\mu & \frac{\Delta m_N}{m_N} b^2 - \epsilon_\mu^2 & -\epsilon_\mu \epsilon_\tau \\
-\epsilon_e \epsilon_\tau & -\epsilon_\mu \epsilon_\tau & -\epsilon_\tau^2
\end{pmatrix},
\]

where

\[
\Delta m_N \equiv 2 [\Delta M_N]_{23} + i \left([\Delta M_N]_{33} - [\Delta M_N]_{22} \right) = -i \Delta M_2.
\]
Benchmark Points

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>Current Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_N</td>
<td>120 GeV</td>
<td>400 GeV</td>
<td>5 TeV</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>2×10^{-6}</td>
<td>2×10^{-7}</td>
<td>2×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$\Delta M_1/m_N$</td>
<td>-5×10^{-6}</td>
<td>-3×10^{-5}</td>
<td>-4×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>$\Delta M_2/m_N$</td>
<td>$(1.59 - 0.47 i) \times 10^{-8}$</td>
<td>$(1.21 + 0.10 i) \times 10^{-9}$</td>
<td>$(1.46 + 0.11 i) \times 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>$(5.54 - 7.41 i) \times 10^{-4}$</td>
<td>$(4.93 - 2.32 i) \times 10^{-3}$</td>
<td>$(4.67 - 4.33 i) \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>$(0.89 - 1.19 i) \times 10^{-3}$</td>
<td>$(8.04 - 3.79 i) \times 10^{-3}$</td>
<td>$(7.53 - 6.97 i) \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>ϵ_e</td>
<td>$3.31 i \times 10^{-8}$</td>
<td>$5.73 i \times 10^{-8}$</td>
<td>$2.14 i \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>ϵ_μ</td>
<td>$2.33 i \times 10^{-7}$</td>
<td>$4.30 i \times 10^{-7}$</td>
<td>$1.50 i \times 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>ϵ_τ</td>
<td>$3.50 i \times 10^{-7}$</td>
<td>$6.39 i \times 10^{-7}$</td>
<td>$2.26 i \times 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>Observables</td>
<td>BP1</td>
<td>BP2</td>
<td>BP3</td>
<td>Current Limit</td>
</tr>
<tr>
<td>BR($\mu \rightarrow e\gamma$)</td>
<td>4.5×10^{-15}</td>
<td>1.9×10^{-13}</td>
<td>2.3×10^{-17}</td>
<td>$< 4.2 \times 10^{-13}$</td>
</tr>
<tr>
<td>BR($\tau \rightarrow \mu\gamma$)</td>
<td>1.2×10^{-17}</td>
<td>1.6×10^{-18}</td>
<td>8.1×10^{-22}</td>
<td>$< 4.4 \times 10^{-8}$</td>
</tr>
<tr>
<td>BR($\tau \rightarrow e\gamma$)</td>
<td>4.6×10^{-18}</td>
<td>5.9×10^{-19}</td>
<td>3.1×10^{-22}</td>
<td>$< 3.3 \times 10^{-8}$</td>
</tr>
<tr>
<td>BR($\mu \rightarrow 3e$)</td>
<td>1.5×10^{-16}</td>
<td>9.3×10^{-15}</td>
<td>4.9×10^{-18}</td>
<td>$< 1.0 \times 10^{-12}$</td>
</tr>
<tr>
<td>$R_{\mu \rightarrow e}^{T_i}$</td>
<td>2.4×10^{-14}</td>
<td>2.9×10^{-13}</td>
<td>2.3×10^{-20}</td>
<td>$< 6.1 \times 10^{-13}$</td>
</tr>
<tr>
<td>$R_{\mu \rightarrow e}^{Au}$</td>
<td>3.1×10^{-14}</td>
<td>3.2×10^{-13}</td>
<td>5.0×10^{-18}</td>
<td>$< 7.0 \times 10^{-13}$</td>
</tr>
<tr>
<td>$R_{\mu \rightarrow e}^{Pb}$</td>
<td>2.3×10^{-14}</td>
<td>2.2×10^{-13}</td>
<td>4.3×10^{-18}</td>
<td>$< 4.6 \times 10^{-11}$</td>
</tr>
<tr>
<td>$\Omega_{e\mu}$</td>
<td>5.8×10^{-6}</td>
<td>1.8×10^{-5}</td>
<td>1.6×10^{-7}</td>
<td>$< 7.0 \times 10^{-5}$</td>
</tr>
</tbody>
</table>
Falsifying (High-scale) Leptogenesis at the LHC

[Deppisch, Harz, Hirsch (PRL '14)]
Falsifying (Low-scale) Leptogenesis?

- One example: **Left-Right Symmetric Model**. [Pati, Salam '74; Mohapatra, Pati '75; Senjanović, Mohapatra 75]
- **Common lore:** $M_{W_R} > 18$ TeV for leptogenesis. [Frere, Hambye, Vertongen '09]
- Mainly due to additional $\Delta L = 1$ washout effects induced by W_R.

- True only with generic $Y_N \lesssim 10^{-11/2}$.
- Somewhat weaker in a class of low-scale LRSM with larger Y_N.
 [BD, Lee, Mohapatra '13]
- A lower limit of $M_{W_R} \gtrsim 10$ TeV.
- **A Discovery of M_{W_R} at the LHC rules out leptogenesis in LRSM.**
 [BD, Lee, Mohapatra '14, '15; Dhuria, Hati, Rangarajan, Sarkar '15]