Neutrino Theory — Overview

Lisa L. Everett
University of Wisconsin-Madison

XI International Conference on the Interconnections between Particle Physics and Cosmology (PPC 2017)

(image credits: Wikipedia, E. Palti)
A wealth of discoveries in neutrino physics since 1998...

Some highlights:

1998: atmospheric ν_μ disappearance (SK)
2002: solar ν_ϵ disappearance (SK)
2002: solar ν_ϵ appear as ν_μ, ν_τ (SNO)
2004: reactor $\bar{\nu}_\epsilon$ oscillations (KamLAND)
2004: accelerator ν_μ disappearance (K2K)
2006: accelerator ν_μ disappearance (MINOS)

2011: accelerator ν_μ appear as ν_ϵ (T2K, MINOS)
2012: reactor $\bar{\nu}_\epsilon$ disappear (Daya Bay, RENO)

2012: reactor angle measured!

2014: hint for CP violation? (T2K)
2015: hints for normal hierarchy? (SK, T2K, NOvA)
2016: hint for non-maximal atm mixing? (NOvA)

Signals physics beyond the Standard Model (SM)!
The emergent picture…

a (seemingly) robust 3-neutrino mixing scheme

\[U_{\text{MNSP}} = R_1(\theta_{23}) R_2(\theta_{13}, \delta_{\text{MNSP}}) R_3(\theta_{12}) P \]

<table>
<thead>
<tr>
<th></th>
<th>NuFIT 3.0</th>
<th>Capozzi et al.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{12}[^\circ])</td>
<td>33.56\pm0.77</td>
<td>33.02\pm1.06</td>
<td>33.2\pm1.2</td>
</tr>
<tr>
<td>(\theta_{13}[^\circ])</td>
<td>8.46\pm0.15</td>
<td>8.43\pm0.14</td>
<td>8.45\pm0.15</td>
</tr>
<tr>
<td>(\theta_{23}[^\circ])</td>
<td>41.6\pm1.5</td>
<td>40.5\pm1.4</td>
<td>41.4\pm1.6</td>
</tr>
<tr>
<td>(\delta[^\circ])</td>
<td>-99^\circ\pm59</td>
<td>-108^\circ\pm38</td>
<td>7.45\pm0.25</td>
</tr>
<tr>
<td>(\Delta m_{21}^2 \times 10^{-5} \text{eV}^2)</td>
<td>7.50\pm0.19</td>
<td>7.37\pm0.17</td>
<td>2.55\pm0.05</td>
</tr>
<tr>
<td>(\Delta m_{31}^2 \times 10^{-3} \text{eV}^2)</td>
<td>2.524\pm0.039</td>
<td>2.56\pm0.05</td>
<td>2.55\pm0.05</td>
</tr>
</tbody>
</table>

Global Fits:

Gonzalez-Garcia et al.,’14,’16
(www.nu-fit.org)
Capozzi et al.,’13,’16
Forero et al., ‘14

(image credits: King, Luhn)
Caveat: some anomalies in the data

1995: $\bar{\nu}_e$ appearance (LSND)
2007: $\bar{\nu}_e$ appearance (MiniBooNE)
2012: ν_e appearance (MiniBooNE)
1995: ν_e disappearance (Gallium)
2011: ν_e disappearance (Reactor)

\simeV-scale sterile neutrino(s)?

But the situation is unclear:

Here set aside this possibility, focus on 3 active families only...
New questions, excitement for BSM physics!

Implications for the SM flavor puzzle:

what is the origin of the quark and lepton masses and mixings?

Goal: a satisfactory and credible theory of flavor (very difficult!)

Many questions:

- Majorana or Dirac neutrinos?
- Nature of neutrino mass suppression?
- Mass hierarchy?
- Lepton mixing angle pattern?
- CP violation?
- Implications for BSM paradigms?
- Connections to other new physics (NP)?
Mass Generation

Quarks, Charged Leptons

“natural” mass scale tied to electroweak scale

Dirac mass terms, parametrized by Yukawa couplings

\[Y_{ij} H \cdot \bar{\psi}_Li \psi_{Rj} \rightarrow M_u, M_d, M_e \]

top quark: O(1) Yukawa coupling

rest: suppression (flavor symmetry)

Neutrinos

Main question: origin of neutrino mass suppression

Options: Dirac \[\Delta L = 0 \]

Majorana \[\Delta L = 2 \]
Majorana first: \(\Delta L = 2 \)

Advantages: naturalness, leptogenesis, \(0\nu\beta\beta \)

SM at NR level: Weinberg dimension 5 operator

\[
\frac{\lambda_{ij}}{\Lambda} L_i H L_j H
\]

if \(\lambda \sim O(1) \) \(\Lambda \gg m \sim O(100 \text{ GeV}) \) (but wide range possible)

Underlying mechanism: examples

Type I seesaw \(\nu_R \) (fermion singlet)

Type II seesaw \(\Delta \) (scalar triplet)

Type III seesaw \(\Sigma \) (fermion triplet)

+ variations

(image credit: Dinh et al.)
Prototype: Type I seesaw

Type I: Minkowski; Yanagida; Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic; ...

right-handed neutrinos:

\[Y_{ij} L_i \nu_{Rj} H + M_{Rij} \nu_{Ri} \nu^c_{Rj} \]

\[\mathcal{M}_\nu = \begin{pmatrix} 0 & m \\ m & M \end{pmatrix} \]

\[m \sim \mathcal{O}(100 \text{ GeV}) \quad M \gg m \]

\[m_1 \sim \frac{m^2}{M} \quad m_2 \sim M \gg m_1 \]

\[\nu_{1,2} \sim \nu_{L,R} + \frac{m}{M} \nu_{R,L} \]

advantages: naturalness, connection to grand unification, leptogenesis, ...

disadvantage: testability (even at low scales)

Different in Type II, III: new EW charged states — visible at LHC?

Type II: Konetchsy, Kummer; Cheng, Li; Lazarides, Shafi, Wetterich; Schecter, Valle; Mohapatra et al.; Ma; ...

Type III: Foot, He, Joshi; Ma; ...
Radiative neutrino mass generation:

can have other NR operators in SM with \(\Delta L = 2 \) (odd mass dimension \(d > 5 \))

\[
\begin{align*}
\text{d=7:} & \quad LLL\ell^c H \\
& \quad LLQd^c H \\
& \quad LLQ\bar{u}^c H \\
& \quad L\bar{e}^c \bar{u}^c d^c H \\
\text{d=9:} & \quad LLL\ell^c \ell^c \quad \text{(Zee, Babu)} \\
& \quad LLQd^c Qd^c \\
& \quad \text{and many others…}
\end{align*}
\]

“open up” operator with SM-charged states, close external legs: loops

NP scale can be accessible at LHC! of course, subject to LFV bounds

One way in which leptoquarks can appear…

e.g. scalar leptoquark \(\phi \sim (3, 1, -1/3) \)

+ octet fermion \(f \sim (8, 1, 0) \)

Potential relevance for B-physics anomalies…

(example of Bauer-Neubert leptoquark ’15)

Cai, Gargalones, Schmidt, Volkas ’17
Many other ideas for Majorana neutrino masses...

more seesaws (double, inverse,...),
SUSY with R-parity violation, RS models...

lepton number violation → Majorana ν masses

Now for Dirac neutrino masses:

Require strong suppression $Y_{\nu} \sim 10^{-14}$

Less intuitive, but mechanisms exist...

extra dimensions, new gauge symmetries (non-singlet ν_R),
SUSY breaking effects, string instanton effects,...

General themes:

Trade-off b/w naturalness and testability.
Much richer than quark and charged lepton sectors.
Lepton mixings

\[\mathcal{U}_{\text{MNSP}} = \mathcal{R}_1(\theta_{23}) \mathcal{R}_2(\theta_{13}, \delta) \mathcal{R}_3(\theta_{12}) \mathcal{P} \]

Pontecorvo; Maki, Nakagawa, Sakata

\begin{align*}
(\mathcal{U}_{\text{MNSP}})_{ij} = &
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix} \\
& \begin{pmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13}
\end{pmatrix} \\
& \begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0
\end{pmatrix}
\end{align*}

diagonal phase matrix (Majorana neutrinos)

Reactors angle last measured but now best known!

\[\sin^2 2\theta_{13} = 0.0841 \pm 0.0027 \text{(stat.)} \pm 0.0019 \text{(syst.)} \]

Daya Bay (most recent result)

“Dirac” phase \(\delta \) unconstrained at \(3\sigma \) but best fit consistent with \(\delta \sim -\frac{\pi}{2} \) (also T2K hint)

Compare quarks:

\[\mathcal{U}_{\text{CKM}} = \mathcal{R}_1(\theta_{23}^{\text{CKM}}) \mathcal{R}_2(\theta_{13}^{\text{CKM}}, \delta^{\text{CKM}}) \mathcal{R}_3(\theta_{12}^{\text{CKM}}) \]

Cabibbo; Kobayashi, Maskawa

\begin{align*}
\theta_{12}^{\text{CKM}} &= 13.0^\circ \pm 0.1^\circ = \theta_C \quad \text{(Cabibbo angle)} \\
\theta_{23}^{\text{CKM}} &= 2.4^\circ \pm 0.1^\circ \\
\theta_{13}^{\text{CKM}} &= 0.2^\circ \pm 0.1^\circ \\
\delta^{\text{CKM}} &= 60^\circ \pm 14^\circ
\end{align*}

3 “small” angles, 1 “large” phase
Lepton mixings

Certainly **two large mixing angles**: θ_{23}, θ_{12}

Dirac phase: too soon to say, but intriguing hints)

Majorana phases: unlikely to know anytime soon**

A main question: is θ_{13} large or small?

Large reactor angle: **vs.** Small reactor angle:

the case for **anarchy**

the case for structure (symmetry)

2012 reactor angle meas. near prior upper bound:

renewed interest in flavor anarchy

de Gouvea and Muryama ’12
Altarelli et al. ’12, Bai and Torroba ’12,...

(also popular approach for NP flavor violation at scales \sim10 TeV)

Baumgart et al. ’15,...
Family symmetries (structure)

Very different structure for leptons and quarks!

Quarks:

spontaneously broken family symmetry at scale M

$$Y_{ij} H \cdot \bar{\psi}_L \psi_R \rightarrow \left(\frac{\varphi}{M} \right)^{n_{ij}} H \cdot \bar{\psi}_L \psi_R$$

small mixings and hierarchical masses:

continuous family symmetry

both Abelian and non-Abelian: many examples!

$\mathcal{M}_u, \mathcal{M}_d$ approx diagonalized by same unitary transformation

(can can choose basis where both close to diagonal)

$\mathcal{U}_{\text{CKM}} = \mathcal{U}_u \mathcal{U}_d^\dagger \sim 1 + \mathcal{O}(\lambda)$

$\lambda \sim \frac{\varphi}{M}$

Wolfenstein parametrization: $\lambda \equiv \sin \theta_c = 0.22$

suggests Cabibbo angle (or some power) as a flavor expansion parameter
Leptons:

For the **charged leptons**: hierarchical masses → similar strategy?

But now, in basis where M_e is diagonal, M_ν is not diagonal:

M_ν diagonalization requires 1 small, 2 large mixing angles!

Arguably the **most challenging*** pattern: (* for three families)

\[
\begin{align*}
\text{small angles} & \quad \longrightarrow \quad \sim \text{diagonal } M_\nu \\
\text{large, small} & \quad \longrightarrow \quad \sim \text{Rank} M_\nu < 3 \\
\text{large angles} & \quad \longrightarrow \quad \text{anarchical } M_\nu \\
\text{small, large} & \quad \longrightarrow \quad \text{fine-tuning, non-Abelian}
\end{align*}
\]

relatively straightforward at leading order

→ A model-building opportunity!
Lepton mixings:

No unique theoretical starting point for the flavor expansion!

\[\mathcal{U}_{\text{MNSP}} \sim \mathcal{W} + O(\lambda') \]

mixing angles \((\theta^\nu_{12}, \theta^\nu_{23}, \theta^\nu_{13})\) (diagonal charged lepton basis)

“Bare” mixing angles generically shift due to \(O(\lambda')\) corrections

\[\theta^\nu_{13} = 0 \quad \theta_{13} \sim \frac{\lambda_C}{\sqrt{2}} \]

A priori, expansions in quark and lepton sectors unrelated.

Unification paradigm (broad sense): set \(\lambda' = \lambda_C\)

ideas of quark-lepton complementarity and “Cabibbo haze”

Raidal ’04, Minakata+Smirnov ’04, many others...
(“haze” terminology from Datta, L.E., Ramond ’05)

Pre-measurement, speculation that reactor angle is a Cabibbo effect

Ramond ’04,...
Possible starting points:

Most studied: maximal atmospheric, zero reactor

\[\theta_{23}^\nu = \frac{\pi}{4} \quad \theta_{13}^\nu = 0 \]

classify scenarios by bare solar angle

- **tri-bimaximal mixing**: \(\sin^2 \theta_{12}^\nu = 1/3 \)
 - [Harrison, Perkins, Scott '02; Xing '02; He, Zee '02; Ma '03...]

- **bimaximal mixing**: \(\sin^2 \theta_{12}^\nu = 1/2 \)
 - [Vissiani '97; Barger et al. '98; Baltz, A. Goldhaber, M. Goldhaber '98;...]

- **golden ratio (A) mixing**: \(\sin^2 \theta_{12}^\nu = 1/(2 + r) \sim 0.276 \)
 - [Datta, Ling, Ramond '03; Kajiyama, Raidal, Strumia '08;...]
 - \(r = (1 + \sqrt{5})/2 \)

- **golden ratio (B) mixing**: \(\sin^2 \theta_{12}^\nu = (3 - r)/4 \sim 0.345 \)
 - [Rodejohann '09;...]

- **hexagonal mixing**: \(\sin^2 \theta_{12}^\nu = 1/4 \)
 - [Albright, Duecht, Rodejohann '10, Kim and Seo '11;...]

Also can study scenarios without \(\theta_{13}^\nu = 0 \)

- [Lam '13; Holthausen et al. '12; Hagendorn... many others...]

All can be obtained via discrete non-Abelian family symmetries
Model-building approach

Choose a discrete non-Abelian group for family symmetry

Options: $SU(3)$, $SO(3)$ subgroups:

A_4, S_4, A_5, $\Delta(3n^2)$, $\Delta(6n^2)$, D_n, T', I', ...

Example (Majorana ν):

Flavons:

ϕ^l, ϕ^ν

Residual symmetries:

$T\langle \phi^l \rangle \approx \langle \phi^l \rangle$

$S, U \langle \phi^\nu \rangle \approx \langle \phi^\nu \rangle$

(or broken further, e.g. only S or U unbroken)

Corrections in flavor expansion: (i) NLO in flavons, (ii) “charged lepton”/kinetic/RG...

Many papers! Some authors (not comprehensive): King, Ma, Ding, Feruglio, Lam, Rodejohann, Chen, Hagedorn, Luhn, Stuart, LE...
Example: tri-bimaximal mixing (TBM/HPS)

$\mathcal{U}^{(\text{HPS})}_{\text{MNSP}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$

(\simClebsch-Gordan coeffs!)

Meshkov, Zee…

Many models pre-dated reactor angle measurements clearly current data requires Cabibbo-sized corrections

see e.g. Albright et al. ’10

Prototypical scenarios: A_4 S_4 T' (typically SUSY/SUSY-GUT)

Many, many authors!!

Ma et al.; Altarelli, Feruglio; Carone et al.; Chen et al.; King et al.; Ding; Lam…

“minimal” flavor group (contains S, T, U generators)

Lam; Ding et al;…

Residual symmetries: $\mathbb{Z}_3 \sim T \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \sim S, U, SU$ (Klein symmetry)

Can further break down Klein symmetry:

1 column only of HPS matrix preserved: TM1, TM2 + corrections

see King ’17 for review
CP Violation

Consider case of spontaneous CP violation — calculable phases.

Idea of generalized CP: \(X^T M_\nu X = M_\nu^* \), \(Y^\dagger M_e M_e^\dagger Y = (M_e M_e^\dagger)^* \)

“ordinary” CP has \(X = Y = 1 \)

Grimus, Rebelo '95

automorphisms of discrete family symmetry:

\[
X \rho(g) X^{-1} = \rho(g')
\]

(consistency condition)

family symmetry

Residual/generalized CP symmetries

existence of “CP basis”

group classification:

Holthausen, Lindner, Schmidt '12
Chen et al. '14

Lots of interesting recent work along these lines!

many recent papers! see King '17 for review
Residual/CP symmetries (model-independent approach)

Assumptions: Majorana neutrinos, full Klein symmetry preserved

\[U_\nu^T M_\nu U_\nu = M_\nu^{\text{diag}} \quad \text{invariant if} \quad U_\nu \rightarrow U_\nu Q_\nu \quad Q_\nu = \text{Diag}(\pm 1, \pm 1, \pm 1) \]
\[\text{Det} Q_\nu = 1 \]

From these, obtain diagonal Klein generators

\[(G_i^{\text{diag}})^T M_\nu^{\text{diag}} G_i^{\text{diag}} = M_\nu^{\text{diag}} \]

Then obtain Klein generators:

\[G_i = U_\nu G_i^{\text{diag}} U_\nu^\dagger \quad G_i^T M_\nu G_i = M_\nu \]

(reconstruct from MNSP for diagonal charged leptons)

For generalized CP operators in neutrino sector:

from above and

\[X_\nu G_i^* - G_i X_\nu = 0 \]

\[X_i X_i^* = G_0 \quad X_0 X_i^* = G_i \quad X_i X_j^* = G_k \]

Similar approach for charged lepton generalized CP:

but need to be careful of phase redefinition degrees of freedom
SUSY GUTs and String Models

SUSY GUTs: explicit realizations of these scenarios (+ quark sector)

recent example: \[
\text{SUSY Pati-Salam} \quad \text{Poh, Raby, Wang '17}
\]

\[
SU(4)_C \times SU(2)_L \times SU(2)_R \quad D_3 \times U(1) \times \mathbb{Z}_2 \times \mathbb{Z}_3
\]

can achieve consistency with LHC, neutrino data

(26-parameter fit)

String Models:

variety of possibilities, not necessarily just minimal Type I seesaw

\[\nu_R\] candidates often not pure gauge singlets

explorations of Type I seesaw in heterotic orbifolds \cite{Giedt et al.; Buchmuller et al.}

braneworlds: exponentially suppressed Yukawas

\cite{see e.g. Langacker for reviews}

“Mixed” scenarios with seesaw and R-parity violation

e.g. G2 models \cite{Acharya et al. ’16;...}
Concluding Remarks

The SM flavor puzzle is a difficult, intriguing problem — we’re just beginning to scratch its surface!

Most important question: **Majorana** or **Dirac** neutrinos?

New insights/approaches from the lepton data

Naturalness/testability tradeoff

Lots of ideas, lots of room for more

Stay tuned!