Raytracing: Intersections

COSC 4328/5327
Scott A. King

Basic Ray Casting Method

- ∀ pixels in screen
 - Shoot ray p from the eye through the pixel.
 - Find closest ray-object intersection.
 - Get color at intersection

Backward Tracing

Basic Ray Casting Method

- ∀ pixels in screen
 - Shoot ray p from the eye through the pixel.
 - Find closest ray-object intersection.
 - Get color at intersection

Basic Ray Casting Method

- ∀ pixels in screen
 - Shoot ray p from the eye through the pixel.
 - Find closest ray-object intersection.
 - Get color at intersection

Basic Ray Casting Method

- ∀ pixels in screen
 - Shoot ray p from the eye through the pixel.
 - Find closest ray-object intersection.
 - Get color at intersection
Basic Ray Casting Method

- ** ∀ pixels in screen**
 - Shoot ray \vec{p} from the eye through the pixel.
 - Find closest ray-object intersection.
 - Get color at intersection

The Truth!

- Solving intersections can be hard
- Simple surfaces can yield a closed-form solution
- General case: non-linear root finding
 - No simple, quick method.
 - Expensive!
 - Won’t always converge
 - When repeated for millions of rays, you WILL find the divergent case!

Good News

- Use primitives with closed-form solutions.
- Use object-oriented methods.
 - 1 intersection method per primitive type.
 - Object does its own intersecting.
- Surfaces with closed-form solutions.
 - quadrics: sphere, cylinder, cone, ellipsoid, paraboloid, etc.
 - polygons.
 - tori, super-quadrics, low-order splines.

Ray-Object Intersection

- Define object implicitly by a function $f(P) = 0$
 - For any point P, when f is 0, the point is on the surface.
 - Non-zero defines how far away from the surface you are,
 - usually negative below surface (inside object)
- Many objects can be defined implicitly
 - Give potentially infinite resolution
 - Tessellating objects harder than using f directly
- An infinite plane is defined by the function:
 $$f(x,y,z) = Ax + By + Cz + D$$
- A sphere of radius R in 3-space:
 $$f(x,y,z) = x^2 + y^2 + z^2 - R^2$$

Basic Ray Model

- Let’s treat a ray as a vector. Namely we can represent a ray by the vector form:
 $$\vec{p} = \vec{u} + \vec{v}t$$

Basic Ray Model

- Let’s treat a ray as a vector. Namely we can represent a ray by the vector form:
 $$\vec{p} = \vec{u} + \vec{v}t$$
 - where: \vec{p} is any point along the ray
Basic Ray Model

- Let’s treat a ray as a vector. Namely we can represent a ray by the vector form:
 \[\vec{p} = \vec{u} + \vec{v}t \]
- where:
 - \(\vec{p} \) is any point along the ray
 - \(\vec{u} \) is the starting point
 - \(\vec{v} \) (unit vector) is the direction
 - \(t \) is distance along ray.

Ray/Sphere Intersection

- Simple Case: A sphere of radius 1 centered at the origin
 \[x^2 + y^2 + z^2 = 1 \]
- The ray \(\vec{p} = \vec{u} + \vec{v}t \) satisfies the equation for the sphere.
 \[\vec{u}^2 + 2\vec{v}\vec{u}t + \vec{v}^2t^2 = 1 \]
- We solve using the quadratic formula:
 \[\frac{\vec{u}^2 - 1 + 2\vec{u}\vec{v}t + \vec{v}^2t^2 = 0}{c \quad b \quad a} \]

Ray/Sphere Intersection

- What about a sphere centered at \((c_x, c_y, c_z)\) or radius \(r \)?
 \[(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = r^2 \]
- Plug in ray equation and get
 \[(u_x + v_xt - c_x)^2 + (u_y + v_yt - c_y)^2 + (u_z + v_zt - c_z)^2 = r^2 \]
- And solve using the quadratic formula.
 \[a = v_x^2 + v_y^2 + v_z^2 - 1 \]
 \[b = 2(u_x(v_x - c_x) + v_y(v_y - c_y) + v_z(v_z - c_z)) \]
 \[c = (u_x - c_x)^2 + (u_y - c_y)^2 + (u_z - c_z)^2 - r^2 \]
- Is there another way?
Ray/Sphere Intersection

• Is there another way?
• What if we move the sphere to the origin?

\[\mathbf{T} = -(c_x, c_y, c_z) \]

Ray/Sphere Intersection

• Is there another way?
• What if we move the sphere to the origin?
• How will we get the ray to hit the sphere at the origin?
• Will the transformed ray also hit the transformed sphere?
• So we can use the original equation which is a it simpler (less calculations)

Intersection in World or Object Space?

• Sphere at origin (object space)
 \[a = \mathbf{u}^2 = 1 \]
 \[b = 2\mathbf{u} \cdot \mathbf{v} \]
 \[c = \mathbf{v}^2 = 1 \]
• Sphere centered at \((c_x, c_y, c_z)\) with radius \(r\)
 \[a = (\mathbf{u} - \mathbf{c}) \cdot (\mathbf{u} - \mathbf{c}) - r^2 \]
 \[b = 2(\mathbf{u} - \mathbf{c}) \cdot \mathbf{v} \]
 \[c = \mathbf{v}^2 - 1 \]
• How much more math?
• What about extra math transforming ray?
• So why do it?
• How does \(t\) relate for object space ray and world space ray?

Ray/Sphere Intersection

• This approach works for any transformed object.
• Start with a primitive object. It is transformed (scaled, rotated, translated, etc.) by a matrix, \(S\). The inverse of that matrix will put it back to its original state.
• So the ray just needs to be transformed by \(S^{-1}\) then the simple ray/object intersection can be used.

\[\mathbf{u}' = S^{-1}\mathbf{u} \]
\[\mathbf{v}' = S^{-1}\mathbf{v} \]

Normal

• We need the normal to calculate illumination and reflection vector.
• What is \(N\) for a unit sphere about the origin that intersects a ray at point \(p\)?
• What is \(N\) after that sphere is transformed using the matrix \(S\)?
• Can we transform the normal by \(S\)?
 – Rigid transforms fine (R,T)
 – Scales cause problems

 Example: say \(M\) scales in \(x\) by \(S\) and \(y\) by \(2\)

\[N_{\text{new}} \]
\[M N_{\text{old}} \]
Wrong!

Scaling distorts normal in opposite sense of scale applied to surface
Review

- The matrix S, transforms object space into world space.
- Therefore the inverse goes from world space to object space.
- If q is the corresponding point to p in world space, then
 $q = Sp$
 $p_{world} = Sp_{object}$
- Using the inverse
 $p = S^{-1}q$
 $p_{object} = S^{-1}p_{world}$

Normal

- For a plane that passes through the origin, and a point, p, on the plane, $\vec{N}p = 0$
- In matrix form this becomes, $\vec{N}^T p = 0$
- If q is the world space point to p
 $q = Sp$ $p = S^{-1}q$
- $\vec{N}^T S^{-1}q = 0$ describes a plane in world space whose normal is $\vec{N}^T S^{-1}$
- Let \vec{N}_w (world space normal) be the normal of the transformed plane, so
 $\vec{N}_w = S^{-1}T \vec{N}$
- The transpose of the inverse takes our object space normal into world space!

Ray/Triangle Intersection

- Triangle defined by vertices, a, b, c.
- 3 points defines a plane with a normal
 $\vec{n} = (b - a) \times (b - c)$
- For any point, p, in the plane
 $\vec{n} \cdot (p - b) = ?$
- Where the ray intersects the plane, $\vec{p} = \vec{a} + \vec{v}t$ satisfies the above equation so
 $\vec{n} \cdot (\vec{a} + \vec{v}t - b) = 0$
 $\vec{n} \cdot \vec{v}t = \vec{n} \cdot (\vec{a} - b)$
 $t = \frac{\vec{n} \cdot (\vec{a} - b)}{\vec{n} \cdot \vec{v}}$

Ray/Triangle Intersection

- If ray parallel to the plane, $\vec{r} \cdot \vec{v} = 0$
 - Can't solve for t and no intersection
- Otherwise we have an intersection within the plane.
 - Doesn't mean triangle is intersected.

Ray/Triangle Intersection

- If ray parallel to the plane, $\vec{r} \cdot \vec{v} = 0$
 - Can't solve for t and no intersection
- Otherwise we have an intersection within the plane.
 - Doesn't mean triangle is intersected.
- If the three dot products
 $(b - a) \times (p - a) \cdot \vec{r}$
 $(c - b) \times (p - b) \cdot \vec{r}$
 $(a - c) \times (p - c) \cdot \vec{r}$
 all have the same sign, the point is inside the triangle.
- Why?
Quadrics

Sphere: \(x^2 + y^2 + z^2 = r^2 \)
Cylinder: \(x^2 + y^2 = r^2 \)
Paraboloid: \(x^2 + y^2 = z \)
Hyperboloid: \(x^2 + y^2 - z^2 = \pm r^2 \)

Ray: \(\mathbf{x}(t) = \mathbf{o} + t \mathbf{d} \)

Torus

• Product of two implicit circles
 \((x - R)^2 + z^2 - r^2 = 0 \)
 \((x + R)^2 + z^2 - r^2 = 0 \)
 \(\{(x - R)^2 + z^2 - r^2 \rightarrow (x + R)^2 + z^2 - r^2\} \)
 \(x^2 + 2x^2z^2 + z^4 - 2x^2r^2 - 2z^2r^2 + r^4 = 2z^2R^2 - 2x^2R^2 + R^4 \)
 \((x^2 + z^2 - r^2 - R^2) = 4z^2R^2 - 4r^2R^2 \)

Variations?

Use the transformation trick

Ray-Object Intersection

• Returns intersection in a hit record
• “Next” field enables hit record to hold a list of intersections
• List only non-negative intersection parameters
• Ray always originates outside
 – If first \(t = 0 \) then ray originated inside
• Parity classifies ray segments
 – Odd segments “in”
 – Even segments “out”

Basic Ray Casting Method

• \(\forall \) pixels in screen
 – Shoot ray \(\mathbf{P} \) from the eye through the pixel.
 – Find closest ray-object intersection.
 – Get color at intersection

Illumination Model

• For an object where does the light come from?
 – Direct from light source
 – Through the object.
 – Reflected from another object
 – Incident illumination (ambient)
Incident Illumination

- Where does this come from?
 - How about light transmitted (refracted) through another object.
 - How about light bouncing off of a non-reflective surface.
- For now we won’t worry about this incident illumination, it is the subject of other methods (*global illumination, radiosity, photon mapping*). We’ll just call it ambient light.

Types of Rays

- To trace the light backward we need to perform the illumination calculations. To do this we need a few extra ray types.
 - **Primary** rays - Carry light directly to a pixel.
 - **Secondary** rays – get light to a point
 - **Shadow** rays - Bring light from the light source.
 - **Reflection** rays - Bring light reflected from another surface.
 - **Transmission** rays - Carry light through an object.
 - **Recursive** rays

Recursive Ray Tracing

```java
RayCast(screen)
for all pixels (x,y) in screen:
  trace(rayFromEyeThrough(x,y))

closestIntersection(ray)
  for all objects find intersection
  for closest intersection return the intersection point, surface normal,
  surface, surface attributes, etc.

Shade(point, ray)
  Color = background;
  for each light
    if !Shadow(point, ray, light)
      Color += PhongIllumination(point, ray, light)
    if specularMaterial trace(reflect(point, ray))
    if refractive trace(refraction(point, ray))
  return Color
```

Demo (2d)

- http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html